
IP Timing Constraints Promotion Challenges
A method to automatically generate SoC Timing Constraints

Inaba Takanori

Design Engineer

Socionext Inc.

Kyoto, Japan



Motivation

• Today’s SoC contain large amount of external or internal IP’s. Each IP has its own timing constraints.

• Integration if IP constraints poses a challenge because 
• The timing designer must first understand the IP clocking which is extremely hard if it’s a 3rd party IP.
• Manually connecting thousands of clocks between blocks in order to stitch the top level SDC is error prone, takes a 

long time and is very painful.

• Up until now, the SDC integration task had been mostly manual and time consuming operation with limited or no 
solution available from existing EDA vendors. 

• Depending on the design size, on average it takes about 8 Man-Months for the integration activities
• It takes another 3.5 Man-Months for qualifying the correctness of the SDC

This paper presents a method of integrating and promotion of timing constraints using Excellicon’s tools in order to 
significantly reduce the integration TAT and to generate a sign-off quality SDC

PLL

CLKGEN IPs

1/n

1/n

1/n

SDC

SDC

SDC

SDC

G

G
C

C
G

G

GG

G

C

C create_clock G create_generated_clock

G

G

G

Analog

IP IP IP

IP IP IP

IP IP IP

SDC SDC SDC SDC

SDC SDC SDC SDC

SDC
SDC

Integration Budgeting

SDC SDC SDC SDC



Objective

Automatic discovery of all clocks in the design
 This will help in alleviating the manual identification and writing of all clocks

Display the clocking structure intuitively
 Designers can easily understand the clock network and correct any issues early on

Promotion & Demotion of IP constraints across the SoC
 Provide guidance when constraints conflicts occurs

Preserve the timing intent of the IP 
 After promotion, the IP SDC constraints should still reflect the original timing intent of the IP’s since the IP 

owner guarantees correct operation of IP as long as the corresponding SDC is used

Transform IP exceptions to Chip level
 Boundary exceptions must be handled appropriately

Reduce the integration TAT 



Idea – Promotion with IP Isolation

P

D Q

G

QN

STEP1
 Extract clocks from where the create_clock is defined in the IP SDC

 If no SDC, extract clocks from the clock pin of the sequential cells

 Automatically identify and classify clocks from the control signals

BA

GIP SDC - create_clock Promoted SDC - create_generated_clock

The create_clock replaced by 
create_generated_clock and 
“mastered” to the top level 
extracted G clock in promoted SDC

IP1

BA

IP2

clk1

clk2

sel

P

M

Clock extraction path shown in Red arrows 

C

C

C G Extracted - create_generated_clock

P Extracted - create_clock M Extracted – Mode Pin (control signal)

P

D Q

G

QN

BA

IP1

BA

IP2

clk1

clk2

sel

P

M

“sel” signal set to 1

G

G

STEP2
 Replace IP create_clock with the create_generated_clock

 Promote the clock properties like freq, duty cycle to the top

 Promote other constraints like FP and MCPs

 Identify and create master relationship for each clock (shown in red arrows)

 Generate all other constraints like set_clock_groups, exceptions, IO delays etc. G

0

1



Evidence

We worked with Excellicon ConMan tool and implemented this feature

Promoted results were verified by running 3rd party SDC equivalence tool

Without ConMan With ConMan

Clock Discovery + 
Promotion

1M Month 4 M Hours

Demotion NA NA

Size of Design = 50M Instances
Number of Clocks = 958 

Without ConMan With ConMan

Clock Discovery 1 M Month 0.1 M Month

Promotion 7 M Month 2 M Month

Demotion 0.25M Month 
(through PT)

0.25 M Month

Size of Design = 500M Instances
Number of Clocks = 1389



Summary

• Excellicon’s ConMan tool greatly simplified our flow and improved significantly the TAT
• Integrated flow reduced many man hours of debug and analysis

• IP timing intent was 100% preserved with this method of promotion

• Abstract clock visualization helped in pruning out early clock network issues
• Helped in understanding the clocking network

• Better Quality of SDC than before
• Eliminated iteration cycles that occurred with the manual method

• Eliminated ambiguity between design teams which eased the handoff issues
• Using the single database to pass timing data between the design teams

• Single database from which SDC’s can be generated for any hierarchy and for any mode


